# Application of Quantitative Structure–Activity Relationships to the Modeling of Antitubercular Compounds. 1. The Hydrazide Family

Cristina Ventura<sup>†,‡</sup> and Filomena Martins<sup>\*,†</sup>

Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Centro de Química e Bioquímica (CQB), Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal, and Instituto Superior de Educação e Ciências, Alameda das Linhas de Torres, 179, 1750 Lisboa, Portugal

Received August 23, 2007

A QSAR/QSPR methodology was used to analyze a set of 173 hydrazides, a great part of which are isoniazid (INH) derivatives. Nineteen molecular descriptors of various types (physicochemical, steric, geometrical, and electronic) have been systematically tested through a careful application of MLR. The analysis revealed that the biological activity of these compounds against *M. tuberculosis* does not depend on lipophilicity, as measured by log *P*. Properties that account for the biological response of isoniazid and related compounds, consistent with a mechanism involving the formation of radical species, were identified. The role of substituents in the stabilization of the intermediate species that gives rise to the active agent, the acyl radical, is discussed. It is postulated that the activation of INH derivatives' prodrugs (hydrazines and hydrazones) occurs near the surface of *M. tuberculosis*.

# Introduction

Tuberculosis (TB<sup>*a*</sup>) has become a harsh worldwide problem: about 2 million people die each year, particularly in developing countries; it is estimated that about one-third of the world population is currently infected with the bacillus in its latent form and that nearly 9 million new cases develop each year.<sup>1,2</sup> According to WHO, multiresistant tuberculosis is responsible for approximately 460 thousand new cases per year and for about 740 thousand new patients infected by both *M. tuberculosis* and HIV/AIDS.<sup>3</sup> Recent estimates show that 10% of all new TB infections are resistant to at least one anti-TB drug. Latest reports on multidrug resistant (MDR) and extensively drug-resistant tuberculosis (XDR-TB) indicate that rates of drug resistance may be much higher than previously described.<sup>4</sup>

The Stop Tuberculosis Partnership, a wide network of organizations, donors, and countries, has recently launched the Global Plan TO STOP TB 2006–2015,<sup>3,4</sup> an ambitious strategy that foresees a fall in the incident rates of all forms of TB by 2015, as a way to attain the Partnership's long-term target of eliminating tuberculosis as a public health problem by 2050. To achieve these goals, it is crucial, among other aspects, to invest in new tools, i.e., to develop (and adopt) new diagnostic tests, new drugs, and new vaccines.

To accomplish these objectives, basic research in molecular biology and microbiology directed toward the identification and validation of new targets for drugs and new candidate compounds, the development of new drugs and of more effective clinical trials, and a further (and deeper) knowledge of the mechanisms of action of existing (and future) active compounds are urgently sought and are therefore areas of strategic importance.

In the past 30 years, several proposals intended at understanding the mechanism of action of various drugs, in particular of compounds with the hydrazide functionality ( $R_1R_2$ -N-N- $R_3R_4$ ), against *M. tuberculosis*, have been presented in the literature.<sup>5–19</sup> However, the knowledge of these mechanisms of action is still rather limited.

It is generally accepted that any pharmacological process occurs in three conceptual steps: penetration, binding, and activation.<sup>20</sup> That being so, for an ideal drug to be efficient, it is crucial that it possesses adequate hydrophilic/hydrophobic properties to penetrate the biological system (be it a membrane, an organelle, a cell, an organ, or an organism), that it holds certain structural, geometrical, and/or physicochemical characteristics that allow it to bind to the biological target (enzyme, receptor, transporter, etc), and finally that the adduct formed produces a biological response that will generate an observable effect. Such a challenge, ubiquitous in the design of any new drug, implies some knowledge of structure–activity and, in general, of property–activity relationships.

Within our research group, a database has been assembled with more than 1700 potentially active compounds against *M. tuberculosis*, their respective biological activity expressed in terms of minimum inhibitory concentrations, MICs, as well as a large set of molecular descriptors and properties (Abraham's and Verloop's parameters, partition coefficients, geometrical and electronic parameters, etc.).

The purpose of the present paper is to initiate a systematic analysis of the main factors influencing the activity of each family of potential antitubercular compounds included in the referred database. Our first target compounds are those possessing a hydrazide functionality.

# **Materials and Methods**

In this paper, we have analyzed 173 hydrazides whose structures are given in Table S1 in Supporting Information.

Abraham's descriptors<sup>21</sup> were calculated using the Absolv program. Partition coefficients were collected from Leo and Hansch's database as clogP  $^{22}$  and MIC values from ref 11 (in a

<sup>\*</sup> To whom correspondence should be addressed. Phone: (351) 217500870. Fax: (351) 217500088. E-mail: filomena.martins@fc.ul.pt.

<sup>&</sup>lt;sup>†</sup> Faculdade de Ciências, Universidade de Lisboa and Centro de Química e Bioquímica (CQB).

<sup>&</sup>lt;sup>‡</sup> Instituto Superior de Educação e Ciências.

<sup>&</sup>lt;sup>*a*</sup>Abbreviations: TB, tuberculosis; *M. tuberculosis*, *Mycobacterium tuberculosis*; MDR, multidrug-resistant; XDR-TB, extensively drug-resistant tuberculosis; MIC, minimum inhibitory concentration; MLR, multiple linerar regression; LOO, leave-one-out; LMO, leave-many-out; INH, isoniazid; CP-KatG, catalase peroxidase of *M. tuberculosis*; NAD<sup>+</sup>, nicotinamide adenine dinucleotide; NADH, reduced form of NAD<sup>+</sup>; *mt*CP, *M. tuberculosis* catalase peroxidase.

total of 136 compounds tested against the BCG strain of *M. tuberculosis*) and from refs 12 and 23–25 (the remaining 37 compounds, tested against the  $H_{37}R_v$  strain of the bacillus). Geometrical, structural, and electronic parameters were calculated using Molecular Modeling Pro Plus software,<sup>26</sup> after molecular structure optimization for each compound achieved by MM2, a molecular mechanics method incorporated in the software. Partial charges were calculated using the Del Re method and the MOPAC and CNDO programs and dipole moments either by PEOE and Huckel/4 methods or by a modified Del Re method, all included in the referenced software.

To establish a relationship between a property of the system and the molecular characteristics of the selected compounds, we performed standard multiple linear regressions (MLR) of the type

$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \boldsymbol{\zeta} \tag{1}$$

where  $\zeta$  is an  $n \times 1$  residuals vector whose elements are assumed to be independent normal random variables with mean zero and known variance  $\sigma^2$ , **X** is a known  $n \times k$  matrix of molecular descriptors, **A** is a  $k \times 1$  vector of adjusted parameters, and **Y** is an  $n \times 1$  vector of the response variable related to either the activity or other system property. For this purpose, we used the Data Analysis add-in, available in Microsoft Excel, and several statistical validation tests to ensure the reliability of the analyses.

The success of this type of methodology depends, however, on the fulfillment of essential prerequisites to guarantee the robustness and the interpretative and predictive abilities of the developed models. Homogeneity and representative character of the data set, redundancy of explanatory variables, and validation processes of the regression equations are issues that necessarily have to be addressed to ensure the reliability of the resulting information and/ or the prediction capability of the model.

Searching for Outliers. Suspicious points were initially spotted by inspection of a plot of  $Y_{exp}$  vs  $Y_{calc}$ . The decision to consider any given point as an outlier was made according to two criteria: Cook's distance and the more conventional measure  $|Y_{calc} - Y_{exp}| > 2$  SD, where SD stands for standard deviation of the fit.

Cook's distance,<sup>27,28</sup>  $D_i$ , is a measure of the influence of a suspicious point (outlier) in the results of a certain regression and is given by the following expression:

$$D_i = \frac{\sum_{i} (\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_i)^2}{\mathbf{k}\sigma^2} \tag{2}$$

where  $\hat{Y}$  and  $\hat{Y}_i$  are the  $n \times 1$  vectors of the predicted observations for the full data set and for the data set without the *i*th observation, respectively, and *k* is the number of parameters adjusted by the linear model with a variance  $\sigma^2$ . The specific criterion used to exclude an alleged outlier was  $D_i > 4/(n - k - 1)$ , where *n* is the number of observations.

The selected data set (i.e., without the outliers identified in the previous step) was then further tested using normal probability residual distribution plots, and the model was subsequently refitted.<sup>29</sup>

**Internal Validation.** When the outliers were excluded, the observations were divided into training and test sets with similar degrees of variability. In order to make an internal validation of the data, we applied the leave-one-out (LOO) approach to the training set: $^{30,31}$ 

$$Q^{2} = 1 - \frac{\sum_{i=1}^{\text{training}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{\text{training}} (y_{i} - \overline{y}_{i})^{2}}$$
(3)

where  $y_i$ ,  $\hat{y}_i$  and  $\overline{y}_i$  are the measured, predicted, and averaged (over the whole data set) values of the dependent variable, respectively, and  $Q^2$  is a cross-validated correlation coefficient.

The training set was also validated by the leave-many-out (LMO) approach. In this case, the training set was divided into n subsets

 $T_{i}$ , being each  $(n-1)T_i$  subset taken as a training set and the whole remaining set as the test set. An average value of  $Q^2$  (eq 3) for all the *n* trials was then determined. A high average value for  $Q^2$  for the LMO validation gives an indication of the robustness of the model.

We have also considered traditional statistical criteria such as the determination coefficient,  $R^2$ , the standard deviation SD, the *F* statistic, and the significance level (SL) of each adjusted parameter (parameters were kept if SL > 98%) and have tested the intercorrelations among all descriptors included in each regression.

**External Validation.** The most serious way to assess a model's true predictive power is by using external validation, i.e., by making predictions for an independent data set not used to establish the model.

In our case, the test set used for external validation was chosen so that it fulfilled the same variability requisites as the training set, both in the independent and in the dependent variables.

The predictive ability of the model was assessed by an external  $Q^2_{\text{ext}}$  parameter defined as

$$Q_{\text{ext}}^{2} = 1 - \frac{\sum_{i=1}^{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{\text{test}} (y_{i} - \overline{y}_{\text{training}})^{2}}$$
(4)

where  $y_i$  and  $\hat{y}_i$  are the measured and predicted (over the test set) values, respectively, and  $\bar{y}_{\text{training}}$  is the averaged value of the dependent variable for the training set.

The following statistical criteria were also taken into consideration:  $^{30,31}$ 

$$Q_{\text{ext}}^2 > 0.5; \quad R^2 > 0.6; \quad \frac{R^2 - R_0^2}{R^2} < 0.1; \quad 0.85 < m < 1.15$$

where  $R^2$  is the test set's regression determination coefficient,  $R_0^2$  is the same quantity for the regression that goes through the origin, and *m* is the slope of the regression between the estimated and the observed values. To further assess the predictive capability of the established QSAR and QSPR model equations, we have also computed three measures of fit: the average error (AE), the absolute average error (AAE), and the standard deviation (or rmse) of the predictions.

#### **Results and Discussion**

Hydrophobic/Hydrophilic Properties. As stated before, it is very important to be able to assess a compound's hydrophilic/ hydrophobic character to anticipate its potential ability to penetrate a biological membrane. We have thus investigated the relationship between the lipophilicity of these compounds, as measured by their *n*-octanol/water partition coefficient, log *P*, in fact Leo and Hansch's clogP, and 19 molecular descriptors,  $X_i$ , of physicochemical, steric, geometrical, and electronic nature. With this purpose, we analyzed, for the 82 isoniazid derivatives, all multiple linear regressions of  $\log P$  vs  $X_i$  which resulted from all possible combinations of the available descriptors for these compounds. We used the same methodology to relate  $\log P$  with the 9 descriptors available for the 149 hydrazides for which we possess Abraham's parameters. Finally, we tested log P for the total set in terms of the 4 descriptors available for all 173 compounds.

A first analysis of the results, based on basic statistical criteria, showed that only the following types of relations were meaningful:

$$\log P = f(A, B, V, S, E) \tag{5}$$

$$\log P = g(L, B_1, B_5, d_{\mathrm{K}}) \tag{6}$$

$$\log P = h(d_1, d_2, d_3, d_4, a_1, a_2, a_3, a_4, c, \mu)$$
(7)

Equation 5 involves Abraham's physicochemical descriptors;<sup>32</sup> namely, A is the solute H-bond acidity, B is the solute H-bond

basicity; V is the McGowan characteristic molar volume, S is the solute dipolarity/polarizability, and E is the excess molar refraction. These parameters were calculated by the Absolv program and are listed in Table 1.

Equation 6 entails the steric Verloop's parameters<sup>33,34</sup> L,  $B_1$ , and  $B_5$  and a geometrical parameter  $d_K$ .  $B_1$  is essentially a measure of the size (largely a steric effect) of the first atom in the substituent.  $B_5$  is an attempt to define the effective volume of the whole substituent, and L is a measure of the substituent's length.  $d_k$  is the 2D distance between the pyridinic nitrogen and the terminal nitrogen of the hydrazide functionality<sup>11</sup> (see Figure 1).

These parameters were calculated using the Molecular Modeling Pro Plus software,<sup>26</sup> which optimizes a compound's molecular structure by MM2, a molecular mechanics method, and are shown together with the molecules' dipole moment,  $\mu$ , in Table 2.

Equation 7 involves geometrical and electronic descriptors for the isoniazid derivatives, also calculated by Molecular Modeling Pro Plus. The  $a_4$  parameter is the dihedral angle RNN(CO). c is the Mulliken charge on the external hydrazide N atom, and  $\mu$  is, as stated above, the molecule's dipole moment. The remaining parameters are identified in Figure 1. All these descriptors, except for  $\mu$ , are presented in Table 3.

For each multiple linear regression of eqs 5–7, we tested every  $C_p^m$  combination, where *m* is the number of descriptors in each equation and *p* varies from 1 to *m*. The best found MLR of eqs 6 and 7 shows rather low determination coefficients:  $R^2$ = 0.282 (for *n* = 105) and  $R^2$  = 0.292 (for *n* = 78), respectively.

No other multiparametric regression involving these descriptors and tested for any subset of compounds or for sets of compounds chemically related led to any statistically significant correlation. It seems therefore clear that the selected steric, geometrical, and electronic parameters do not seem to be capable of modeling the partition coefficient of these compounds in the *n*-octanol/water system. On the contrary, the best found MLR of eq 5 shows a much higher statistical significance:

$$\log P = (-2.012 \pm 0.161)B + (-0.553 \pm 0.126)S + (2.736 \pm 0.164)V \quad (8)$$

 $n = 149; R^2 = 0.680; SD = 0.994; F = 104$ 

It is interesting to observe that the coefficients of this equation have the same sign but are slightly different in magnitude from those previously reported by Abraham et al.<sup>32b</sup> in a correlation equation involving 493 compounds related to our set. This difference in magnitude might simply be due to the fact that our set of hydrazides occupies a different chemical space.

Since this equation seems to fairly explain the system's response in terms of log P, we attempted to validate the model both internally and externally in order to ensure its robustness and evaluate its predictive ability.<sup>29–31</sup> The results are shown in Table 4 and Figure 2. The predictions for the test set are expressed as standard deviation (SD), average error (AE), and average absolute error (AAE). The figures of merit fulfill the statistical criteria set above for both internal and external validation. We can therefore say that our model equation is capable of predicting log P for this class of compounds with an SD of 0.67 log units.

These results reveal that increasing the molar volume of the hydrazides favors the partition toward the organic component of the two-phase system while an increase in the solute's basicity and dipolarity/polarizability diminishes its presence in octanol.

It is interesting to note that, while these descriptors, in particular B and V, do explain a significant amount of the log P

variability, whether we analyze the total set of compounds (eq 8) or different families separately, for the same sets there is again no significant correlation between either  $\log P$  and the Verloop descriptors or between  $\log P$  and any other group of geometrical or electronic descriptors. This seems to indicate that going from the aqueous to the organic phase depends more on the eventual ability of *n*-octanol to accommodate the solute through physicochemical interactions than on steric constraint or other geometrical characteristics of the solute.

On the other hand, it should also be noted that the inclusion of a third descriptor S, statistically significant for a 95% confidence level according to an F test of variances for the additional term, does not increase appreciably the quality of the regressions. This fact suggests that the dipolarity/polarizability characteristics of the solutes are not relevant for the partition process, although the relative importance of this parameter is higher when one considers the isoniazid derivatives separately (see Table 4).

The criterion used for the detection of outliers has excluded from the initial set (n = 149), a subset of 12 compounds located in the extremes of the dependent variable's domain, i.e., a subset of highly lipophilic and highly hydrophilic compounds (log  $P_{aver}$ = -2.88 for 11 out of the 12 outliers and log P = 5.24 for the remaining compound). (We considered outliers compounds 26, 33, 35, 60, 87, 88, 89, 98, 127, 146, 149, and 173 in Table S1 in Supporting Information.) If we look at their molecular structures, we see that they correspond to compounds with high dipole moments and large dipolarity/polarizability values, which may suggest the involvement of distinct interaction mechanisms in the partition process. The correlation with the 137 remaining compounds (i.e., excluding the outliers) is also shown in Table 4. The signs of the coefficients remain unchanged, and their magnitudes are comparable to those in eq 8, with the S term being a little bit less significant. As expected, the statistical parameters have considerably improved.

For all tested correlations where  $Y = \log P$ , the independent term has no statistical significance. This can be rationalized as follows: for an ideal solute for which *B*, *S*, and *V* approach zero, log *P* tends to zero and therefore *P* approaches 1. This means the solute's concentration in both phases becomes very close.

**Biological Activity.** Various kinds of biological data can be related to lipophilicity parameters.<sup>20,34</sup> Lipophilicity is indeed considered on its own the most informative and successful physicochemical property in medicinal chemistry<sup>20</sup> and has been used in numerous structure–property relationships.<sup>35,36</sup> We have thus searched for a relationship between the biological activity of these compounds, expressed in terms of log(1/MIC) against *M. tuberculosis*, and a set of molecular descriptors  $X_i$ , where  $X_i$  are the same as those in eqs 5–7:

$$\log(1 / \text{MIC}) = a_0 + \sum_{i=1}^n a_i X_i$$
(9)

The most relevant results are shown in Table 5. The first important conclusion is that in every correlation tested for any set of compounds, we always have  $X_i \neq \log P$ . We also tested different  $\log(^{1}/_{\text{MIC}}) = f_{nl}(\text{clogP})$  equations, where  $f_{nl}$ represents a nonlinear function and no significant correlation was detected for any set or subset of compounds. This clearly shows that lipophilicity is not an important property to explain the biological response of these compounds. This observation might imply one out of two hypotheses (or both): (i) the penetration process through the cell membrane is not determinant for the antitubercular activity of these com-

 Table 1. Abraham's Descriptors for the Tested Compounds

| Compd    | A     | В     | S     | Ε     | V     | clogP          | compd     | A     | В              | S              | Ε     | V     | clogP          |
|----------|-------|-------|-------|-------|-------|----------------|-----------|-------|----------------|----------------|-------|-------|----------------|
| 1        | 0.543 | 1.492 | 2.033 | 1.155 | 1.032 | -0.67          | <b>98</b> | 0.500 | 1.040          | 1.300          | 1.129 | 0.099 | -0.5           |
| 2        | 0.458 | 1.570 | 2.073 | 1.091 | 1.595 | 0.87           | 99<br>100 | 0.451 | 0.992          | 1.666          | 1.018 | 0.932 | -0.28          |
| 3<br>4   | 0.458 | 1.509 | 2.073 | 1.092 | 1.434 | 0.20           | 100       | 0.183 | 1.941          | 2.388          | 1.902 | 2.135 | -0.20<br>-0.13 |
| 5        | 0.290 | 1.310 | 1.300 | 1.309 | 1.768 | 1.45           | 102       | 0.183 | 1.967          | 2.338          | 1.912 | 2.275 | 0.4            |
| 6        | 0.290 | 1.350 | 1.310 | 1.294 | 1.909 | 1.97           | 103       | 0.864 | 2.982          | 3.148          | 2.394 | 2.733 | -1.24          |
| 7        | 0.290 | 1.350 | 1.310 | 1.294 | 1.909 | 1.97           | 104       | 0.543 | 1.228          | 1.827          | 1.087 | 1.131 | -0.05          |
| 8        | 0.461 | 1.292 | 2.300 | 1.628 | 1.682 | 1.31           | 106       | 0.543 | 1.243          | 1.848          | 1.229 | 0.997 | -1.4           |
| 10       | 1.054 | 2.094 | 3.712 | 2.283 | 2.020 | -1.16          | 107       | 0.543 | 1.191          | 2.001          | 1.293 | 1.336 | 0.86           |
| 11       | 0.724 | 1.674 | 2.775 | 1.270 | 1.329 | -0.44          | 109       | 0.290 | 0.650          | 0.950          | 1.145 | 1.214 | 0.14           |
| 12       | 0.724 | 2.025 | 3.379 | 1.919 | 1.755 | 0.19           | 110       | 0.290 | 0.700          | 1.520          | 1.279 | 1.311 | 0.77           |
| 13       | 0.810 | 1.800 | 2.100 | 2.024 | 1.920 | 0.07           | 111       | 1.084 | 2.162          | 2.479          | 1.130 | 1.060 | -2.53          |
| 15       | 0.290 | 1.230 | 1.210 | 1.019 | 1.1/2 | -0.17          | 112       | 1.084 | 2.209          | 2.730          | 0.985 | 1.103 | -2.64          |
| 10       | 0.290 | 1.240 | 1.170 | 1.034 | 1.515 | 0.30           | 113       | 1 084 | 2.000<br>2.240 | 2 803          | 1 172 | 1 558 | -254           |
| 18       | 0.290 | 1.120 | 1.220 | 1.062 | 1.231 | 0.11           | 115       | 0.724 | 1.323          | 2.171          | 0.621 | 0.903 | -1.67          |
| 19       | 0.290 | 1.120 | 1.220 | 1.062 | 1.372 | 0.64           | 116       | 0.370 | 1.000          | 0.720          | 0.381 | 0.606 | -1.62          |
| 20       | 0.610 | 1.280 | 1.560 | 1.401 | 1.131 | -0.97          | 117       | 0.890 | 1.460          | 1.830          | 1.312 | 1.190 | 0.08           |
| 21       | 0.770 | 1.670 | 2.170 | 1.342 | 1.429 | -0.8           | 118       | 0.290 | 1.140          | 1.310          | 1.680 | 1.401 | 0.72           |
| 23       | 0.290 | 1.070 | 2.170 | 1.470 | 1.570 | -0.80          | 120       | 0.195 | 1.009          | 2.148          | 1.898 | 1.880 | 3 22           |
| 24       | 0.290 | 1.010 | 1.490 | 1.159 | 1.154 | 0.1            | 120       | 0.661 | 1.524          | 1.775          | 1.287 | 1.272 | -0.23          |
| 25       | 0.290 | 1.030 | 1.570 | 1.631 | 1.290 | 0.21           | 122       | 0.290 | 1.140          | 1.300          | 1.155 | 1.032 | -0.67          |
| 26       | 0.290 | 1.280 | 1.890 | 1.502 | 1.206 | -3.96          | 123       | 0.543 | 1.492          | 2.033          | 1.155 | 1.032 | -0.32          |
| 27       | 0.290 | 1.280 | 1.820 | 1.813 | 1.639 | 1.43           | 124       | 0.543 | 1.494          | 2.032          | 1.153 | 1.172 | -1.35<br>-2.01 |
| 20<br>29 | 0.290 | 1.300 | 1.820 | 1.012 | 1.780 | 0.06           | 125       | 0.847 | 1.022          | 1.958          | 0.903 | 1.101 | -2.01<br>-1.55 |
| 30       | 0.790 | 1.440 | 1.750 | 1.644 | 1.739 | 1.26           | 127       | 0.543 | 1.872          | 2.460          | 0.956 | 1.458 | -2.97          |
| 31       | 0.450 | 1.500 | 2.100 | 1.236 | 1.609 | -0.37          | 128       | 0.543 | 2.091          | 2.391          | 0.941 | 1.699 | -1.7           |
| 32       | 0.400 | 1.664 | 1.500 | 1.252 | 1.188 | -1.73          | 129       | 0.705 | 1.278          | 1.242          | 0.565 | 0.979 | -1.06          |
| 33<br>34 | 0.458 | 1.300 | 2.103 | 1.095 | 2.722 | 5.24<br>-0.11  | 130       | 0.545 | 1.200          | 2.019          | 1.479 | 1.202 | 0.09           |
| 35       | 0.430 | 1.950 | 3.798 | 2.247 | 2.094 | -3.22          | 131       | 0.925 | 1.446          | 2.068          | 1.141 | 0.934 | -0.53          |
| 36       | 0.543 | 1.518 | 2.085 | 1.030 | 1.049 | -0.47          | 133       | 0.925 | 1.498          | 2.363          | 1.666 | 1.444 | -              |
| 37       | 0.300 | 1.010 | 1.670 | 1.472 | 1.207 | 0.25           | 134       | 0.951 | 1.608          | 2.143          | 1.149 | 0.893 | -0.99          |
| 38       | 0.458 | 1.572 | 2.072 | 1.090 | 1.736 | 1.31           | 135       | 0.543 | 1.668          | 2.219          | 1.151 | 1.033 | -1.02          |
| 39<br>40 | 0.290 | 1.120 | 1.500 | 1.175 | 1.172 | -0.37<br>-0.37 | 137       | 0.931 | 1.636          | 2.440          | 1.075 | 0.990 | -1.19          |
| 41       | 0.363 | 1.077 | 1.535 | 1.117 | 1.552 | 1.27           | 139       | 1.084 | 2.633          | 3.343          | 1.562 | 1.347 | -3.46          |
| 42       | 1.390 | 2.667 | 2.878 | 1.905 | 2.127 | -2.37          | 140       | 0.543 | 1.728          | 2.144          | 1.168 | 0.990 | -1.19          |
| 43       | 0.822 | 1.621 | 2.872 | 2.091 | 2.135 | 1.04           | 141       | 0.543 | 1.415          | 2.173          | 1.238 | 0.956 | -0.83          |
| 44<br>45 | 0.360 | 1.060 | 1.400 | 1.133 | 1.270 | 0.43           | 142       | 0.543 | 1.415          | 2.173          | 1.238 | 0.956 | -0.48<br>-1.12 |
| 46       | 0.363 | 1.088 | 1.673 | 1.258 | 2.495 | 4.71           | 143       | 0.788 | 1.561          | 2.638          | 1.622 | 1.056 | -0.77          |
| 47       | 0.363 | 1.071 | 1.566 | 1.122 | 2.538 | 5.19           | 145       | 0.543 | 1.467          | 2.470          | 1.764 | 1.325 | 1.11           |
| 48       | 0.363 | 1.069 | 1.544 | 1.152 | 1.411 | 0.13           | 146       | 0.691 | 3.192          | 1.898          | 1.601 | 1.199 | -1.09          |
| 49       | 0.363 | 1.072 | 1.541 | 1.149 | 1.693 | 1.19           | 147       | 0.543 | 1.209          | 1.722          | 0.954 | 0.893 | -0.56          |
| 50<br>51 | 0.363 | 1.075 | 1.559 | 1.147 | 1.975 | 2.25           | 148       | 0.290 | 1 339          | 2 248          | 1.270 | 1.068 | -3.85          |
| 52       | 0.363 | 1.086 | 1.875 | 1.258 | 1.866 | 1.85           | 150       | 1.084 | 2.284          | 2.998          | 1.454 | 1.249 | -2.1           |
| 53       | 0.363 | 1.377 | 2.151 | 1.789 | 2.360 | 3.15           | 151       | 0.363 | 0.900          | 1.200          | 0.858 | 1.174 | 0.09           |
| 54       | 0.363 | 1.378 | 2.150 | 1.788 | 2.500 | 3.68           | 152       | 0.183 | 1.319          | 1.579          | 0.888 | 1.315 | 0.97           |
| 55       | 0.363 | 1.553 | 2.175 | 1.952 | 2.401 | 3.06           | 153       | 0.461 | 1.009          | 1.989          | 1.428 | 1.543 | 1.98           |
| 50<br>57 | 0.363 | 2.147 | 2.438 | 2.037 | 2.925 | 5.29<br>0.1    | 154       | 0.438 | 1.371          | 2.372          | 1.055 | 1.470 | -0.43<br>-0.51 |
| 58       | 1.217 | 2.370 | 2.633 | 1.760 | 1.928 | -2.2           | 156       | 0.724 | 1.458          | 2.757          | 1.518 | 1.477 | -0.13          |
| 59       | 1.551 | 2.804 | 2.918 | 1.971 | 2.127 | -2.03          | 157       | 0.363 | 0.794          | 1.224          | 0.916 | 1.413 | 1.41           |
| 60       | 2.312 | 4.116 | 3.930 | 2.818 | 3.158 | -3.9           | 158       | 0.363 | 0.786          | 1.233          | 0.951 | 1.272 | 0.06           |
| 61<br>82 | 4.103 | 6.931 | 3.733 | 4.091 | 4.880 | -2.69          | 159       | 0.822 | 1.337          | 2.561          | 1.891 | 1.996 | 1.34           |
| 83<br>84 | 0.310 | 0.900 | 1.080 | 1.294 | 1.195 | 1.12           | 161       | 0.543 | 1.243          | 1.848          | 1.229 | 0.997 | 0.06           |
| 85       | 0.290 | 0.740 | 1.190 | 1.464 | 1.248 | 1.27           | 162       | 0.458 | 1.605          | 2.698          | 1.310 | 1.575 | 0.22           |
| 86       | 0.290 | 0.720 | 1.280 | 1.798 | 1.331 | 1.53           | 163       | 0.461 | 1.043          | 2.115          | 1.703 | 1.648 | 2.45           |
| 87       | 0.543 | 1.332 | 2.390 | 1.390 | 1.247 | -3.03          | 164       | 0.724 | 1.527          | 3.010          | 2.068 | 1.686 | 0.53           |
| 80<br>80 | 0.543 | 1.332 | 2.390 | 1.390 | 1.247 | -3.03          | 165       | 0.363 | 0.828          | 1.350          | 1.191 | 1.518 | 2.06           |
| 90       | 0.788 | 1.432 | 2.390 | 1.488 | 1.172 | -0.64          | 167       | 0.363 | 0.817          | 1.359          | 1.226 | 1.377 | 0.73           |
| 91       | 0.641 | 1.200 | 2.525 | 1.522 | 1.172 | -0.04          | 168       | 0.363 | 0.826          | 1.354          | 1.221 | 1.941 | 2.84           |
| 92       | 0.788 | 1.476 | 2.304 | 1.426 | 1.172 | -0.64          | 169       | 0.363 | 0.820          | 1.731          | 1.348 | 1.691 | 1.92           |
| 93       | 0.543 | 1.589 | 1.893 | 1.389 | 1.454 | 0.63           | 170       | 4.103 | 6.682          | 3.549          | 4.165 | 4.846 | -1.9           |
| 94<br>95 | 0.543 | 1.191 | 2.205 | 1.530 | 1.131 | -0.06          | 1/1 172   | 0.874 | 2.418<br>1.561 | 2.094<br>2.366 | 1.979 | 2.093 | -1.58<br>-1.1  |
| 96       | 0.984 | 1.456 | 2.003 | 1.348 | 1.331 | -0.27          | 173       | 0.003 | 1.839          | 2.328          | 1.705 | 1.494 | -3.08          |
| 97       | 1.084 | 2.277 | 3.140 | 1.646 | 1.429 | -1.28          | _         | _     | _              | _              | _     | _     | _              |

Note: There are no calculated descriptors for compounds 14, 62-82, 105 and 136.

pounds; (ii) the measure of lipophilicity by an isotropic lipophilicity parameter such as the *n*-octanol–water partition

coefficient<sup>37</sup> is not an adequate model to mimic these specific drug-membrane interactions.



Figure 1. Representation of the geometrical descriptors for isoniazid derivatives.

A close inspection of Table 5 reveals that for only approximately 40% of the analyzed compounds (59 out of 149), the activity against *M. tuberculosis* depends on their basicity and molar volume, the latter being responsible for an increase and the former for a reduction in  $\log(^{1}/_{\text{MIC}})$ . When we restrict this set to include only 17 isoniazid derivatives and 13 hydrazides derived from benzoic acid in a total of 30 structurally similar compounds, the following equation is obtained:

$$log(1/MIC) = (1.892 \pm 0.142) + (-0.436 \pm 0.091)B + (1.201 \pm 0.126)V \quad (10)$$
  

$$n = 30; \quad R^2 = 0.810; \quad SD = 0.311; \quad F = 58; \quad Q^2_{\text{LMO}} = 0.811$$

Equation 10 shows that the biological activity of compounds structurally similar to INH depends on their physicochemical characteristics, namely, B and V, independently of the presence or absence of the pyridinic N atom. The same holds true when the analysis is extended to the 59 compounds of Table 5 (eq 12 in the table) and Figure 3 as referred above.

An interesting result was found for the remaining compounds (24 out of the 59 set) without either a pyridinic or a phenylic ring associated with the hydrazide functionality, i.e., for compounds represented by the formula  $NH_2NHCOR_1$ , where  $R_1$  can be an aromatic substituent or not but is always distinct from  $-C_5NH_4$  and  $-C_6H_5$  (5 of the 29 compounds were not included in the regression because they decreased significantly its statistical meaning):

 $log(1/MIC) = (2.459 \pm 0.449) + (-0.986 \pm 0.201)B + (-1.703 \pm 0.336)V \quad (11)$  $n = 24; \quad R^2 = 0.773; \quad SD = 0.407; \quad F = 36; \quad Q^2_{\text{LMO}} = 0.785$ 

A comparison with eq 10 shows that this correlation, although not as statistical meaningful as the previous one, leads to a negative contribution of the molar volume to the biological efficacy. This might indicate that these compounds operate in a deeper zone of the cell membrane than INH related compounds.

The activity of INH derivatives is also fairly well correlated with geometrical and electronic descriptors, particularly those characterizing the hydrazidic moiety of the molecule. From the best correlations presented in eqs 14 and 15 of Table 5, one can see that the distance between the external atom of the hydrazide and the first atom of the R substituent ( $d_4$  in Figure 1) lessens the antitubercular activity of these compounds, whereas both the molecule's dipole moment ( $\mu$ ) and the Mulliken charge (c) on the external hydrazide N atom enhance it (see eq 14). As for the correlations with steric parameters, the results presented in Table 5 (eqs 16 and 17) show that the length (L) of the substituents and the 2D distance between the pyridinic nitrogen and the terminal nitrogen of the hydrazide functionality ( $d_k$ ) have a positive effect on the activity of INH derivatives while their effective volume ( $B_5$ ) has a negative effect. Independently of the set of descriptors that best explain the variability in the activity of these compounds, we can say that the model equations shown in Table 5 are capable of predicting values of  $\log({}^{1}/_{\text{MIC}})$  to around 0.36 log units.

As stated before, our results give no evidence for a correlation between the biological activity of INH derivatives and their lipophilic properties. This agrees with a study on the activity of isonicotinoylhydrazones for which lipophilicity was also not the critical factor affecting their potency.<sup>24</sup>

Spectroscopic studies on the interaction of tuberculostatics with different liposomes, systems that have been recognized as valuable models of biological membranes,<sup>38</sup> have strongly suggested that INH is located in a very hydrophilic region, operating therefore at the membrane surface. This seems to be in line with the conclusions resulting from the comparison between eqs 10 and 11. On the basis of this evidence, we may infer that in the case of INH derivatives penetration of the compound into the mycobacterial cell wall seems to be less important than binding and/or activation to explain the compounds' biological activity.

Several proposals have been put forward to rationalize the inhibitory action of INH in the synthesis of mycolic acids that form the mycobacterial cell wall. In addition to the mechanisms of action based on the production of INH from the hydrolysis of hydrazones or from the dealkylation of N-alkyl substituted INH derivatives, as proposed by Klopman et al.,<sup>11</sup> and in addition to those based on the enzymatic oxidation of INH to INA (isonicotinic acid) inside the cell, followed by its quaternization and incorporation into a NAD analogue which produces a metabolism disorder, thus causing degeneration of bacterial cell wall and ultimately cell death, as suggested by Seydel et al.,<sup>12</sup> other mechanistic paths have been recently proposed.<sup>5–10,39–46</sup> These involve the formation of a isonicotinoyl acyl radical, which results from the activation of INH by the catalase peroxidase of M. tuberculosis (CP-KatG), followed by its coupling to NADH (or NAD<sup>+</sup>). The exact binding site of INH to the CP-KatG enzyme is still controversial, but recent studies<sup>39-46</sup> strongly suggest that it might be close to the KatG heme pocket, situated in the mtCP N-terminal domain.<sup>43</sup> The INH-NADH (or IN-NAD) adduct, being a powerful inhibitor of InhA, an enoyl-acyl carrier protein reductase involved in mycobacterial cell wall synthesis, also causes a deterioration of the cell wall and in the end its death. The INH-NADH (or IN-NAD) adduct is indeed believed to be the metabolite responsible for the antitubercular activity of INH.5,40,46

Our results, based on the application of a QSAR analysis, namely, through eqs 14 and 16, are also consistent with the need of accepting the formation of a radical species in the process of activation of the prodrug, i.e., of the INH derivatives, in addition to recognizing the importance of the hydrazide group in this process, particularly when this group contains a R substituent with relevant electronic and/or steric characteristics. In fact, substituents at the hydrazide moiety may enhance the efficacy of the prodrug by promoting the formation of the isonicotinoyl acyl radical. However, the way in which R operates seems to be distinct in hydrazines and hydrazones INH derivatives (eqs 18–20 in Table 6).

As can been seen from Table 6, the efficacy of the hydrazine prodrugs is favored by the charge over the hydrazinic external N atom (*c*) but is reduced by the distance between this atom and R ( $d_4$ ) (eq 18). On the other hand, there is no significant correlation between the activity of these compounds and the steric parameters that characterize their substituents. However, recent reports<sup>40,45,46</sup> show that access to the heme active site of

Table 2. Verloop's Parameters for R and Dipole Moments for All Tested Compounds

|             | Compd           | L      | <b>B</b> 5 | B1    | μ(D)               |         | Compd | L      | <b>B</b> 5 | B1    | μ(D)     |
|-------------|-----------------|--------|------------|-------|--------------------|---------|-------|--------|------------|-------|----------|
|             | 1               | 2.185  | 1.170      | 1.170 | 3.44390            |         | 47    | 8.382  | 10.987     | 1.700 | 17.61917 |
|             | 2               | 5.065  | 4.621      | 1.700 | 5.35094            |         | 48    | 4.268  | 3.250      | 2.061 | 5.19137  |
|             | 3               | 4.248  | 3.332      | 2.062 | 4.53640            |         | 49    | 4.268  | 4.476      | 2.655 | 6.06598  |
|             | 4               | 5.058  | 3.655      | 2.062 | 4.98349            |         | 50    | 5.995  | 6.461      | 2.071 | 8.11558  |
|             | 5               | 4.362  | 5.098      | 2.057 | 6.51530            |         | 51    | 5.778  | 3.668      | 2.100 | 7.66146  |
|             | 6               | 4.496  | 5.098      | 2.057 | 6.96003            |         | 52    | 6.663  | 4.518      | 2.094 | 8.77709  |
|             | 7               | 4.362  | 6.120      | 2.057 | 6.99320            |         | 53    | 10.421 | 4.604      | 1.939 | 9.86616  |
|             | 8               | 5.249  | 6.667      | 2.075 | 2.92880            |         | 54    | 11.230 | 4.683      | 1.940 | 10.70450 |
| C R R       | 9               | 4.690  | 4.571      | 2.384 | 3.41520            |         | 55    | 9.561  | 3.221      | 2.062 | 9.81826  |
| $\square$   | 10              | 7.438  | 6.736      | 2.265 | 5.69620            |         | 56    | 12 205 | 4 016      | 2.060 | 4 15276  |
|             | 11              | 4.330  | 3.305      | 1.700 | 6.33695            |         |       | 12.505 | 4.910      | 2.009 | 4.13276  |
|             | 12              | 6.169  | 5.558      | 1.700 | 2.36269            |         | 57    | 6.274  | 3.475      | 2.061 | 7.62397  |
|             | 13              | 7.149  | 5.838      | 2.275 | 6.97842            |         | 58    | 7.164  | 5.064      | 1.891 | 15.21756 |
|             | 14              | 5 512  | 1.152      | 1.739 | 2 82022            |         | 59    | 6.508  | 6.779      | 2.267 | 15.66870 |
|             | 30              | 1 248  | 4.131      | 2 002 | 2.63952<br>8.61053 |         | 60    | 10.421 | 9.892      | 1.784 | 20.88980 |
|             | 32              | 3 461  | 2 572      | 1 700 | 4 33529            |         | 61    | 13.814 | 8.430      | 3.402 | 3.99780  |
|             | 33              | 14.187 | 11.093     | 1.704 | 11.47650           |         | 62    | 7.951  | 5.917      | 2.084 | 2.84378  |
|             | 34              | 5.163  | 5.467      | 1.702 | 7.36882            |         | 63    | 7 947  | 6 270      | 1 985 | 2 58587  |
|             | 35              | 8.180  | 7.413      | 2.272 | 16.06740           |         | 65    | 0.120  | 5.017      | 1.905 | 2.56567  |
|             | 38              | 5.058  | 3.655      | 2.063 | 6.45792            |         | 64    | 9.139  | 5.017      | 1.887 | 3.08622  |
|             | 15              | 3.039  | 2.199      | 1.700 | 3.83480            | os N. R | 65    | 7.950  | 5.022      | 1.892 | 4.55566  |
|             | 16              | 4.278  | 3.326      | 1.700 | 3.45234            |         | 66    | 9.329  | 5.031      | 1.894 | 4.46255  |
|             | 17              | 5.088  | 3.648      | 1.700 | 3.54603            |         | 67    | 9.581  | 5.098      | 1.881 | 15.09380 |
|             | 18              | 4.096  | 3.231      | 1.520 | 2.39048            | N       | 68    | 6.537  | 8.834      | 2.062 | 4.47664  |
|             | 19              | 4.906  | 3.543      | 1.520 | 1.97299            |         | 69    | 6.550  | 10.071     | 2.036 | 1.75200  |
|             | 20              | 3.007  | 2.043      | 1.550 | 3.94309            |         | 70    | 6.546  | 12.670     | 2.032 | 4.75285  |
|             | 21              | 4.735  | 4.461      | 1.550 | 6.28813            |         | 71    | 6 560  | 10 154     | 2 029 | 1 67207  |
| o, _₩       | 22              | 6.452  | 4.353      | 1.700 | 7.85836            |         | 72    | 6.550  | 0.842      | 2.023 | 2 24072  |
|             | 23              | 5.296  | 3.220      | 2.061 | 4.24370            |         | 12    | 6.552  | 9.842      | 2.042 | 2.24072  |
|             | 24              | 3.470  | 1.770      | 1.770 | 3.48550            |         | 73    | 6.548  | 9.560      | 2.055 | 2.24072  |
|             | 25              | 4.110  | 2.060      | 2.060 | 3.42076            |         | 74    | 6.543  | 9.221      | 2.172 | 19.48466 |
|             | 26              | 3.466  | 2.670      | 1.550 | 10.93130           |         | 75    | 6.564  | 9.746      | 1.981 | 11.66940 |
|             | 27              | 6.284  | 3.152      | 1.770 | 3.48007            |         | 76    | 6.567  | 10.418     | 1.990 | 9.60195  |
|             | 28              | 5.918  | 6.085      | 1.700 | 3.34405            |         | 77    | 6.596  | 11.638     | 1.972 | 5.80908  |
|             | 36              | 2 791  | 1 470      | 1.700 | 3 75624            |         | 78    | 10.852 | 17.095     | 2.065 | 5.74408  |
|             | 37              | 3 805  | 1.920      | 1.920 | 3 43203            |         | 79    | 11.586 | 16.991     | 2.060 | 4.61023  |
|             | 39ª             | 3.093  | 2.212      | 1.700 | 3.72170            |         | 80    | 6.566  | 11.523     | 2.011 | 1.88280  |
|             | 40 <sup>a</sup> | 2.915  | 2.124      | 1.550 | 3.37310            |         | 81    | 6.578  | 14.138     | 1.999 | 5.48760  |
|             | 41              | 4.286  | 3.332      | 2.064 | 6.60530            |         | 82    | 6.571  | 12.208     | 1.992 | 4.05250  |
|             | 42              | 8.312  | 5.875      | 1.895 | 13.58290           |         | 83    | 2.103  | 1.000      | 1.000 | 4.38695  |
| 0 N R       | 43              | 8.999  | 4.462      | 1.876 | 11.14202           | °       | 84    | 3.496  | 1.770      | 1.770 | 3.53123  |
| $\bigwedge$ | 44              | 3.044  | 2.199      | 1.700 | 4.16525            |         | 85    | 3.818  | 1.920      | 1.920 | 3.72749  |
|             | 45              | 8.382  | 6.112      | 1.700 | 11.43620           |         | 86    | 4.145  | 2.060      | 2.060 | 3.75454  |
|             | 46              | 12.309 | 10.226     | 1.700 | 16.66968           | n       | 87    | 3.550  | 2.611      | 1.550 | 11.55613 |

Table 2. Continued

|                    | Compd            | L      | <b>B</b> 5 | B1    | μ(D)     |                                           | Compd            | L     | <b>B</b> 5 | B1    | μ(D)      |
|--------------------|------------------|--------|------------|-------|----------|-------------------------------------------|------------------|-------|------------|-------|-----------|
|                    | 88               | 3.553  | 2.612      | 1.550 | 7.42600  |                                           | 131              | 7.782 | 5.132      | 1.700 | 7.82688   |
|                    | 89               | 3.466  | 2.649      | 1.550 | 9.13748  |                                           | 132              | 5.294 | 3.160      | 1.770 | 5.54595   |
|                    | 90               | 2.927  | 2.116      | 1.550 | 2.25404  |                                           | 134              | 5.204 | 3.142      | 1.770 | 4.89734   |
| o. #               | 91               | 2.940  | 2.114      | 1.550 | 3.47815  |                                           | 135              | 5.297 | 4.072      | 1.876 | 8.00199   |
| NH2                | 92               | 2.927  | 2.116      | 1.550 | 1.83554  |                                           | 136              | 6.598 | 3.907      | 1.770 | 3.16966   |
|                    | 93               | 4.311  | 3.277      | 1.550 | 4.91088  |                                           | 137              | 7.586 | 3.543      | 1.770 | 8.02139   |
| R                  | 94               | 2.799  | 2.085      | 1.520 | 0.61972  |                                           | 138              | 6.049 | 3.198      | 1.770 | 2.76777   |
|                    | 95               | 4.297  | 3.181      | 1.520 | 1.84747  | H <sub>2</sub> N N R                      | 139              | 6.045 | 6.490      | 1.770 | 1.59896   |
|                    | 96 <sup>b</sup>  |        |            |       | 2.96321  | 0                                         | 140              | 5.099 | 3.205      | 1.770 | 1.43985   |
|                    | 97               | 4.955  | 3.247      | 1.709 | 4.67641  |                                           | 141              | 5.740 | 3.143      | 1.771 | 3.86568   |
|                    | 98               | 4.115  | 2.729      | 1.550 | 2.36128  |                                           | 142              | 5.007 | 3.175      | 1.771 | 5.49941   |
| n' A               | 99               | 3.070  | 2.081      | 1.550 | 2.48113  |                                           | 143              | 6.819 | 3.142      | 1.777 | 3.96327   |
|                    | 100              | 5.022  | 7.431      | 2.194 | 0.70033  |                                           | 144              | 6.281 | 3.948      | 1.771 | 5.18904   |
| H <sub>2</sub> N R | 101              | 8.444  | 7.135      | 2.070 | 3.94798  |                                           | 145              | 8.029 | 3.878      | 1.770 | 6.63490   |
|                    | 102              | 8.498  | 7.297      | 2.651 | 2.11259  |                                           | 146              | 6.901 | 5.505      | 1.729 | 4.29650   |
|                    | 103              | 7.935  | 10.053     | 1.797 | 6.14218  |                                           | 147              | 2.102 | 1.000      | 1.000 | 7.48367   |
|                    | 104              | 7.436  | 4.237      | 1.700 | 2.86438  | R                                         | 148              | 3.783 | 1.920      | 1.920 | 7.54875   |
|                    | 105              | 4.748  | 5.517      | 1.718 | 4.78685  |                                           | 149              | 3.537 | 2.618      | 1.550 | 17.85851  |
|                    | 106              | 5.199  | 3.164      | 1.779 | 4.98986  | FIX                                       | 150              | 4.948 | 3.238      | 1.712 | 10.59166  |
|                    | 107              | 8.674  | 4.407      | 2.024 | 10.62420 |                                           | 151 <sup>b</sup> |       |            |       | 7.49197   |
|                    | 108              | 4.679  | 7.447      | 1.729 | 4.89778  |                                           | 152 <sup>b</sup> |       |            |       | 8.56438   |
|                    | 109              | 4.636  | 6.089      | 1.727 | 5.62630  |                                           | 153 <sup>b</sup> |       |            |       | 5.22405   |
|                    | 110              | 8.396  | 4.566      | 1.700 | 4.02603  | HIV-H-R                                   | 154              | 4.345 | 4.132      | 2.925 | 9.47918   |
|                    | 111              | 7.035  | 3.703      | 1.907 | 2.00783  |                                           | 155              | 4.344 | 3.305      | 1.700 | 7.74018   |
|                    | 112              | 4.334  | 5.884      | 1.730 | 5.11445  |                                           | 156              | 5.607 | 5.272      | 1.700 | 9.03736   |
|                    | 113              | 15.938 | 9.198      | 2.105 | 0.59794  |                                           | 157              | 4.901 | 3.781      | 1.853 | 13.09009  |
|                    | 114              | 4.759  | 8.119      | 2.105 | 6.71214  |                                           | 158              | 3.953 | 3.370      | 2.064 | 10.92894  |
|                    | 115 <sup>b</sup> |        |            |       | 3.65731  |                                           | 159              | 6.897 | 8.851      | 1.700 | 11.23660  |
|                    | 116              | 2.283  | 1.170      | 1.170 | 3.35378  |                                           | 160              | 8.373 | 6.847      | 1.776 | 17.31178  |
| u                  | 117              | 6.027  | 4.459      | 1.847 | 4.03950  |                                           | 161              | 2.185 | 1.170      | 1.170 | 6.88857   |
| H <sub>2</sub> N R | 118              | 6.666  | 5.560      | 1.770 | 2.55064  | s ,                                       | 162              | 4.283 | 4.083      | 2.906 | 12.19879  |
| 8                  | 119              | 6.211  | 6.234      | 2.610 | 2.49486  |                                           | 163 <sup>b</sup> |       |            |       | 8.94785 · |
|                    | 120 <sup>b</sup> |        |            |       | 5.41296  |                                           | 164              | 5.386 | 5.459      | 1.700 | 9.03715   |
|                    | 121              | 4.968  | 5.999      | 1.958 | 2.12363  |                                           | 165              | 4.893 | 3.774      | 1.854 | 4.82540   |
|                    | 122              | 6.126  | 3.195      | 1.779 | 4.97765  |                                           | 166              | 8.672 | 7.075      | 1.700 | 17.69532  |
|                    | 123              | 6.147  | 3.276      | 1.773 | 5.24434  |                                           | 167              | 3.950 | 3.370      | 2.065 | 5.44076   |
|                    | 124              | 4.905  | 5.655      | 1.727 | 3.89023  |                                           | 168              | 6.463 | 7.602      | 1.885 | 16.87788  |
|                    | 125              | 4.409  | 4.944      | 2.096 | 3.96225  |                                           | 169              | 5.074 | 5.697      | 1.700 | 14.64358  |
|                    | 126              | 5.627  | 4.644      | 2.092 | 3.77222  |                                           | 170              | 8.026 | 12.879     | 1.925 | 22.38454  |
|                    | 127              | 5.390  | 6.754      | 2.102 | 5.85143  |                                           | 171              | 8.290 | 6.923      | 1.761 | 17.84785  |
|                    | 128              | 7.084  | 7.620      | 2.101 | 3.67751  | H <sub>2</sub> N-S-NH                     | 172"             |       |            |       | 9.30823   |
|                    | 129              | 5.139  | 4.011      | 1.944 | 5.53910  |                                           | 173 <sup>b</sup> |       |            |       | 13.95354  |
|                    | 130              | 7.719  | 3.560      | 1.771 | 6.45510  | 0 ~~~°<br>0 <sub>₩p</sub> c <sup>-0</sup> |                  |       |            |       |           |

<sup>*a*</sup> R in position 3 of the pyridinic ring. <sup>*b*</sup> Compounds 96, 115, 120, 151–153, and 163 have no assigned Verloop's parameters because they have more than one substituent. Compounds 172 and 173 do not have a substituent.

| <b>Lable of Ocometrica</b> and Dieenonie Debengtorb for in the related Compounds | Table 3. | Geometrical | and | Electronic | Descriptor | rs for | INH | Related | Compounds |
|----------------------------------------------------------------------------------|----------|-------------|-----|------------|------------|--------|-----|---------|-----------|
|----------------------------------------------------------------------------------|----------|-------------|-----|------------|------------|--------|-----|---------|-----------|

|          |             |         | distance (Å) |                       |         |                       | angle (deg) |                       | dihedral angle<br>RNN(CO) (deg) | Mulliken             |
|----------|-------------|---------|--------------|-----------------------|---------|-----------------------|-------------|-----------------------|---------------------------------|----------------------|
| Compd    | $d_{\rm k}$ | $d_1$   | $d_2$        | <i>d</i> <sub>3</sub> | $d_4$   | <i>a</i> <sub>1</sub> | $a_2$       | <i>a</i> <sub>3</sub> | <i>a</i> <sub>4</sub>           | charge               |
| 1        | 6.35100     | 1.36100 | 1.38530      | 1.37810               | 0.00000 | 119.839               | 119.839     | 109.916               | 116.374                         | -0.66710             |
| 2        | 6.31769     | 1.36005 | 1.38660      | 1.38187               | 1.45692 | 119.995               | 120.152     | 111.663               | 223.627                         | -0.46829             |
| 3        | 6.31195     | 1.35998 | 1.38709      | 1.38090               | 1.45948 | 119.991               | 119.860     | 113.037               | 239.422                         | -0.46624             |
| 4        | 6.31124     | 1.35989 | 1.38714      | 1.38075               | 1.46110 | 119.994               | 119.811     | 113.363               | 239.454                         | -0.46597             |
| 5        | 6.31722     | 1.36012 | 1.38621      | 1.38130               | 1.45677 | 119.991               | 120.311     | 111.508               | 119.438                         | -0.46817             |
| 6<br>7   | 6.31700     | 1.36015 | 1.38646      | 1.38152               | 1.45697 | 119.986               | 120.358     | 111.506               | 119.832                         | -0.46817             |
| 8        | 6 27008     | 1.30017 | 1.36043      | 1.38100               | 1.43087 | 119.991               | 120.309     | 111.344               | 251.292                         | -0.40817<br>-0.36450 |
| 9        | 6 31400     | 1 36018 | 1 38614      | 1 38021               | 1 45242 | 119.901               | 119 625     | 108514                | 232 652                         | -0.41852             |
| 10       | 6.32043     | 1.35962 | 1.38934      | 1.38013               | 1.77881 | 120.004               | 120.816     | 113.840               | 289.529                         | -                    |
| 11       | 6.09528     | 1.35618 | 1.37714      | 1.34646               | 1.44344 | 120.019               | 114.085     | 73.680                | 127.219                         | -0.37345             |
| 12       | 6.09878     | 1.35943 | 1.38352      | 1.34967               | 1.44869 | 120.003               | 115.458     | 119.680               | 129.067                         | -0.37237             |
| 13       | 6.31950     | 1.35956 | 1.38929      | 1.37996               | 1.77852 | 119.999               | 120.833     | 113.931               | 289.278                         | _                    |
| 14       | 4.99342     | 1.36178 | 1.38823      | 1.35131               | 1.44936 | 120.010               | 123.297     | 75.975                | 257.760                         | -0.37944             |
| 15       | 4.91679     | 1.36168 | 1.38674      | 1.37817               | 1.01500 | 119.972               | 123.672     | 108.961               | 116.397                         | -0.66708             |
| 16       | 4.92031     | 1.36177 | 1.38672      | 1.37805               | 1.01490 | 119.976               | 123.677     | 108.964               | 116.884                         | -0.66708             |
| 17       | 4.92481     | 1.36187 | 1.38670      | 1.37805               | 1.01498 | 119.982               | 123.723     | 108.968               | 116.873                         | -0.66708             |
| 18       | 4.91927     | 1.36212 | 1.38702      | 1.37805               | 1.01502 | 119.979               | 123.778     | 108.957               | 116.378                         | -0.66708             |
| 19       | 4.91702     | 1.36211 | 1.38690      | 1.37807               | 1.01492 | 119.978               | 123.772     | 108.964               | 116.393                         | -0.66708             |
| 20       | 4.91085     | 1.36192 | 1.3868/      | 1.37803               | 1.01496 | 119.977               | 123.730     | 109.032               | 116.210                         | -0.66708             |
| 21       | 4.87703     | 1.30107 | 1.38/31      | 1.3/809               | 1.01507 | 119.901               | 123.044     | 108.812               | 116.519                         | -0.00/08             |
| 22       | 4.91230     | 1.30102 | 1.38668      | 1.37857               | 1.01357 | 119.970               | 123.040     | 108.773               | 110.414                         | -0.00708<br>-0.66708 |
| 23       | 4.85915     | 1 36152 | 1 38681      | 1.37820               | 1.01494 | 119.955               | 123.508     | 109.059               | 116.468                         | -0.66708             |
| 25       | 4 92066     | 1.36171 | 1 38692      | 1.37812               | 1.01403 | 119.968               | 123.678     | 108.900               | 116 522                         | -0.66708             |
| 26       | 4.92523     | 1.36200 | 1.38677      | 1.37827               | 1.01496 | 119.965               | 123.666     | 108.960               | 116.365                         | -0.66707             |
| 27       | 4.87205     | 1.36167 | 1.38688      | 1.37842               | 1.01512 | 119.960               | 123.558     | 108.981               | 116.716                         | -0.66708             |
| 28       | 4.92460     | 1.36194 | 1.38679      | 1.37803               | 1.01490 | 119.985               | 123.779     | 108.947               | 116.608                         | -0.66708             |
| 29       | 4.90364     | 1.36208 | 1.38679      | 1.37818               | 1.01493 | 119.974               | 123.651     | 108.969               | 116.462                         | -0.66708             |
| 30       | 4.98419     | 1.36247 | 1.38856      | 1.37654               | 1.45531 | 119.996               | 124.630     | 114.406               | 231.999                         | -0.42710             |
| 31       | 4.99430     | 1.36330 | 1.38955      | 1.37869               | 1.45865 | 119.997               | 124.751     | 111.801               | 236.571                         | -0.42694             |
| 32       | 5.45915     | 1.35997 | 1.39000      | 1.35009               | 1.37522 | 119.980               | 102.291     | 116.622               | 184.633                         | -0.38205             |
| 33       | 4.94580     | 1.36208 | 1.38786      | 1.37934               | 1.45572 | 119.974               | 123.697     | 111.432               | 134.419                         | -0.46852             |
| 34       | 4.96502     | 1.36211 | 1.38/8/      | 1.37930               | 1.45356 | 119.979               | 124.293     | 110.817               | 137.057                         | -0.43615             |
| 35       | 6.31953     | 1.35967 | 1.38926      | 1.37995               | 1.//851 | 120.004               | 120.831     | 113.977               | 289.213                         | -                    |
| 30<br>37 | 4.92580     | 1.30130 | 1.38092      | 1.37805               | 1.01505 | 119.972               | 123.723     | 108.991               | 116.400                         | -0.00/08             |
| 38       | 4.92440     | 1 36203 | 1.38070      | 1.37011               | 1.01480 | 119.973               | 123.703     | 112 070               | 240.479                         | -0.00708<br>-0.46571 |
| 39       | 4.86318     | 1.35945 | 1.38472      | 1.37855               | 1.01505 | 119.801               | 121.868     | 108.810               | 116.139                         | -0.66708             |
| 40       | 4.89430     | 1.36093 | 1.38513      | 1.37721               | 1.01416 | 119.891               | 122.504     | 110.052               | 115.668                         | -0.66709             |
| 41       | 6.13292     | 1.35948 | 1.35107      | 1.23178               | 1.26300 | 116.756               | 125.779     | 121.220               | 179.460                         | -0.35907             |
| 42       | 6.13250     | 1.35972 | 1.35110      | 1.23173               | 1.26319 | 116.700               | 125.988     | 121.050               | 178.942                         | -0.35510             |
| 43       | 6.13840     | 1.35978 | 1.35134      | 1.23243               | 1.26391 | 116.958               | 125.738     | 121.841               | 180.000                         | -0.34409             |
| 44       | 6.13070     | 1.35955 | 1.35101      | 1.23182               | 1.26314 | 116.627               | 125.998     | 121.075               | 180.000                         | -0.35971             |
| 45       | 6.12865     | 1.35953 | 1.35075      | 1.23174               | 1.26308 | 116.493               | 126.241     | 120.615               | 180.970                         | -0.35935             |
| 46       | 6.13044     | 1.35962 | 1.35087      | 1.23183               | 1.26321 | 116.583               | 126.160     | 120.757               | 181.646                         | -0.35935             |
| 47       | 6.13012     | 1.35948 | 1.35083      | 1.23176               | 1.26319 | 116.570               | 126.176     | 120.709               | 181.034                         | -0.35935             |
| 48       | 6.12705     | 1.33902 | 1.33113      | 1.23040               | 1.20200 | 116.498               | 125.780     | 125.144               | 180.000                         | -0.35059<br>-0.35506 |
| 50       | 6 13125     | 1 35917 | 1 35126      | 1 22000               | 1.20172 | 116.945               | 124.044     | 126 554               | 180.636                         | -0.35624             |
| 51       | 6.12439     | 1.35968 | 1.35092      | 1.23029               | 1.26244 | 116.295               | 126.246     | 124.427               | 179.972                         | -0.35599             |
| 52       | 6.12621     | 1.35975 | 1.35105      | 1.23033               | 1.26229 | 116.395               | 126.111     | 124.529               | 179.956                         | -0.35599             |
| 53       | 6.13906     | 1.35973 | 1.35133      | 1.23234               | 1.26356 | 117.066               | 125.346     | 122.251               | 180.143                         | -0.34409             |
| 54       | 6.13120     | 1.35930 | 1.35115      | 1.23154               | 1.26354 | 116.754               | 125.493     | 122.142               | 180.492                         | -0.34409             |
| 55       | 6.13325     | 1.35951 | 1.35121      | 1.23196               | 1.26372 | 116.766               | 125.771     | 121.755               | 180.590                         | -0.34409             |
| 56       | 6.13355     | 1.35942 | 1.35118      | 1.23187               | 1.26354 | 116.833               | 125.545     | 121.966               | 181.333                         | -0.34409             |
| 57       | 6.13014     | 1.35969 | 1.35115      | 1.23047               | 1.26302 | 116.646               | 125.727     | 125.349               | 179.094                         | -0.35290             |
| 58       | 6.13279     | 1.35965 | 1.35104      | 1.23188               | 1.26325 | 116.714               | 125.998     | 121.079               | 179.191                         | -0.35510             |
| 59       | 6.12471     | 1.35994 | 1.35087      | 1.23026               | 1.26366 | 116.233               | 126.596     | 124.503               | 177.451                         | -0.34409             |
| 00<br>61 | 0.14119     | 1.33938 | 1.33310      | 1.23100               | 1.20392 | 11/.083               | 123.383     | 123.480               | 181.149                         | -0.35310<br>-0.35401 |
| 62       | 6 12982     | 1.35200 | 1.34409      | 1.22130               | 1.29149 | 114.290<br>116.441    | 122.545     | 123.943               | 180.426                         | -0.35401             |
| 63       | 6.12902     | 1.35980 | 1.35082      | 1.23200               | 1.26334 | 116 420               | 126.633     | 120.242               | 180 311                         | -0.35417             |
| 64       | 6.12926     | 1.35982 | 1.35094      | 1.23202               | 1.26340 | 116.424               | 126.604     | 120.364               | 180.219                         | -0.35417             |
| 65       | 6.13029     | 1.35991 | 1.35094      | 1.23220               | 1.26343 | 116.489               | 126.561     | 120.434               | 180.173                         | -0.35417             |
| 66       | 6.13092     | 1.35996 | 1.35110      | 1.23214               | 1.26341 | 116.493               | 126.583     | 120.480               | 180.143                         | -0.35417             |
| 67       | 6.12932     | 1.35972 | 1.35086      | 1.23186               | 1.26328 | 116.464               | 126.537     | 120.389               | 180.097                         | -0.35417             |
| 68       | 6.12985     | 1.35967 | 1.35147      | 1.23029               | 1.26599 | 116.722               | 125.026     | 128.940               | 179.928                         | -0.34409             |
| 69       | 6.12789     | 1.35976 | 1.35134      | 1.23045               | 1.26635 | 116.493               | 125.683     | 128.230               | 179.790                         | -0.34665             |
| 70       | 6.12736     | 1.35996 | 1.35110      | 1.23059               | 1.26643 | 116.397               | 126.050     | 127.749               | 179.666                         | -0.34665             |
| 71       | 6.12750     | 1.36014 | 1.35110      | 1.23070               | 1.26674 | 116.346               | 126.246     | 127.784               | 179.779                         | -0.34409             |
| 72       | 6.12749     | 1.36005 | 1.35126      | 1.23067               | 1.26666 | 116.366               | 126.122     | 127.937               | 179.907                         | -0.34409             |
| 73       | 6.12/49     | 1.36005 | 1.35126      | 1.23067               | 1.26666 | 116.366               | 126.122     | 127.937               | 179.799                         | -0.34409             |

|       |                   |         | distance (Å) |                                             |         |                       | angle (deg) |                       | dihedral angle   | Mulliken |  |
|-------|-------------------|---------|--------------|---------------------------------------------|---------|-----------------------|-------------|-----------------------|------------------|----------|--|
| Compd | $d_k$ $d_1$ $d_2$ |         | $d_2$        | <i>d</i> <sub>2</sub> <i>d</i> <sub>3</sub> |         | <i>a</i> <sub>1</sub> | $a_2$       | <i>a</i> <sub>3</sub> | $a_4$ (CO) (deg) | charge   |  |
| 74    | 6.13224           | 1.36007 | 1.35152      | 1.23085                                     | 1.26653 | 116.689               | 125.434     | 128.660               | 179.178          | -0.34409 |  |
| 75    | 6.12737           | 1.36014 | 1.35110      | 1.23075                                     | 1.26669 | 116.327               | 126.274     | 127.719               | 179.918          | -0.34409 |  |
| 76    | 6.12765           | 1.36019 | 1.35118      | 1.23073                                     | 1.26682 | 116.335               | 126.307     | 127.749               | 179.758          | -0.34409 |  |
| 77    | 6.12842           | 1.36025 | 1.35114      | 1.23086                                     | 1.26684 | 116.342               | 126.413     | 127.449               | 179.499          | -0.34409 |  |
| 78    | 6.13064           | 1.36016 | 1.35143      | 1.23084                                     | 1.26670 | 116.537               | 125.878     | 128.217               | 179.761          | -0.34409 |  |
| 79    | 6.12907           | 1.35986 | 1.35146      | 1.23042                                     | 1.26629 | 116.602               | 125.403     | 128.688               | 180.372          | -0.34409 |  |
| 80    | 6.12615           | 1.35999 | 1.35109      | 1.23052                                     | 1.26666 | 116.278               | 126.314     | 127.746               | 179.524          | -0.34409 |  |
| 81    | 6.12837           | 1.35998 | 1.35115      | 1.23059                                     | 1.26648 | 116.440               | 125.941     | 128.013               | 179.568          | -0.34409 |  |
| 82    | 6.12543           | 1.35991 | 1.35098      | 1.23046                                     | 1.26645 | 116.257               | 126.283     | 127.682               | 178.998          | -0.34409 |  |

**Table 4.**  $\log P = a_1 B + a_2 S + a_3 V$ 

Table 3. Continued

| Compd's<br>family |                 | $a_1$<br>$\pm$<br>$s(a_1)$ | $a_2$<br>$\pm$<br>$s(a_2)$  | $a_3$<br>$\pm$<br>$s(a_3)$ | n   | AE <sup>a</sup> | AAE <sup>b</sup> | SD    | $R^2$ | $R_{0}^{2}$ | $Q^2_{ m LOO}$ | $Q^2_{\rm LMO}$ | F   |
|-------------------|-----------------|----------------------------|-----------------------------|----------------------------|-----|-----------------|------------------|-------|-------|-------------|----------------|-----------------|-----|
|                   | TOTAL<br>SET    | -2.218<br>±<br>0.116       | -0.258<br>±<br>0.089        | 2.657<br>±<br>0.116        | 137 |                 |                  | 0.665 | 0.815 |             | 0.814          | 0.814           | 197 |
|                   | TRAINING<br>SET | -2.254<br>±<br>0.149       | -0.203<br>±<br>0.112        | 2.651<br>±<br>0.130        | 98  |                 |                  | 0.665 | 0.830 |             | 0.825          | 0.814           | 154 |
|                   | TEST SET        |                            |                             |                            | 39  | -0.191          | 0.547            | 0.661 | 0.776 | 0.756       | 0.788          |                 |     |
|                   | TRAINING<br>SET | -2.416<br>±<br>0.120       |                             | 2.562<br>±<br>0.121        | 98  |                 |                  | 0.673 | 0.824 |             | 0.819          | 0.818           | 224 |
|                   | TEST SET        |                            |                             |                            | 39  | -0.201          | 0.575            | 0.693 | 0.754 | 0.732       | 0.763          |                 |     |
|                   | TOTAL<br>SET    | -2.327<br>±<br>0.167       | -0.509<br><u>+</u><br>0.158 | 3.052<br>±<br>0.187        | 43  |                 |                  | 0.655 | 0.893 |             | 0.876          | 0.882           | 112 |
|                   | TRAINING<br>SET | -2.298<br>±<br>0.192       | -0.456<br>±<br>0.209        | 3.020<br>±<br>0.250        | 24  |                 |                  | 0.658 | 0.910 |             | 0.888          |                 | 71  |
|                   | TEST SET        |                            |                             |                            | 19  | -0.253          | 0.570            | 0.652 | 0.871 | 0.847       | 0.855          |                 |     |

<sup>*a*</sup> Average error. <sup>*b*</sup> Average absolute error.



**Figure 2.** Plot of  $\log P_{exp}$  vs  $\log P_{calc}$  from eq 8.

KatG presents very strong steric constraints, and therefore, any factor affecting the stereochemistry of these compounds should be very relevant. The observation that even INH derived hydrazines with small volume substituents (e.g., compounds 11,

**15**, **39**, and **40** in Table S1) have very low biological activities by comparison with INH itself confirms this inference.

Table S1 includes 82 INH derivatives, of which 40 are substituted hydrazines, and from these only 8 (compounds 2-4, 9, 14, 30, 31, and 33) show MIC values comparable to that of INH. The remaining hydrazines have MIC values 150-160.000 times higher than INH. A close structural inspection of the 8 most active hydrazines, all of them substituted in the hydrazinic moiety, reveals that (i) the 4 most active compounds (compounds 9, 14, 30, and 31) have a substituent in the hydrazinic moiety with a strong ability to accommodate/delocalize electronic charge and, rather surprisingly, (ii) the remaining 4 hydrazines (compounds 2-4 and 33) possess an aliphatic alkyl substituent, either with a linear or with a branched chain.

On the basis of our QSARs results and on the SARs analysis just described, we can infer that there must be a balance between electronic and steric factors in the activation process of INH derived hydrazines where the specific characteristics of the substituents promote the formation of the acyl radical, provided that the stereochemistry of the prodrug does not obstruct its approximation to the heme site of KatG. This ability to enhance **Table 5.**  $\log(^{1}/_{\text{MIC}}) = a_0 + a_1X_1 + a_2X_2 + a_3X_3$ 

| Compd's<br>family                                                  |                        | $\begin{array}{c} a_0 \\ \pm \\ s(a_0) \end{array}$ | $a_1 \\ \pm \\ s(a_1)$                 | $a_2$<br>$\pm$<br>$s(a_2)$            | $\begin{array}{c} a_3 \\ \pm \\ s(a_3) \end{array}$ | n      | AE       | AAE    | SD    | R <sup>2</sup> | $R_0^{2}$ | $Q^2$ LMO | F  | Eq.  |
|--------------------------------------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------------|--------|----------|--------|-------|----------------|-----------|-----------|----|------|
|                                                                    |                        |                                                     | Co                                     | orrelation wit                        | h Abraham'                                          | s para | meters   |        |       |                |           |           |    |      |
|                                                                    | TOTAL<br>SET           | -1.726<br>±<br>0.095                                | (-0.392<br>±<br>0.064) B               | (1.081<br>±<br>0.086) V               |                                                     | 59     |          |        | 0.326 | 0.773          |           | 0.773     | 96 | [12] |
| R <sub>1</sub> H R <sub>2</sub>                                    | <b>TRAINING</b><br>SET | -1.770<br>±<br>0.137                                | (-0.293<br><u>+</u><br>0.082) <i>B</i> | (0.984<br>±<br>0.120) V               |                                                     | 30     |          |        | 0.320 | 0.758          |           | 0.759     | 42 | [13] |
|                                                                    | TEST<br>SET            |                                                     |                                        |                                       |                                                     | 29     | 0.074    | 0.294  | 0.350 | 0.774          | 0.763     | 0.764     |    |      |
|                                                                    |                        |                                                     | Correlation                            | on with electr                        | onic and geo                                        | ometri | cal para | neters |       |                |           |           |    |      |
| R H B                                                              | TOTAL<br>SET           | 4.896<br><u>+</u><br>1.032                          | (0.049<br>±<br>0.013) μ                | (5.291<br><u>+</u><br>0.685) c        | (-2.301)<br>$\pm$<br>(-2.301)<br>$\pm$<br>(-2.301)  | 33     |          |        | 0.342 | 0.812          |           | 0.813     | 42 | [14] |
|                                                                    | TRAINING<br>SET        | 4.637<br>±<br>1.286                                 | (0.042)<br>$\pm$<br>$(0.016) \mu$      | (5.177<br>±<br>0.892) c               | (-2.101<br>±<br>0.778) d₄                           | 22     |          |        | 0.356 | 0.805          |           | 0.805     | 25 | [15] |
|                                                                    | TEST<br>SET            |                                                     |                                        |                                       |                                                     | 11     | 0.053    | 0.294  | 0.342 | 0.835          | 0.831     | 0.817     |    |      |
|                                                                    |                        |                                                     |                                        | Correlation v                         | vith steric pa                                      | ramet  | ers      |        |       |                |           |           |    |      |
| R-H-H-                                                             | TOTAL<br>SET           | -6.583<br>±<br>0.646                                | (0.130<br>±<br>0.031) L                | (-0.146<br>±<br>0.018) B <sub>5</sub> | $(1.206 \pm 0.129) d_K$                             | 33     |          |        | 0.306 | 0.849          |           | 0.850     | 54 | [16] |
| $ \begin{array}{c} & & \\ & & \\ & & \\ & + \\ & \\ & & \\ & \\ &$ | TRAINIG<br>SET         | -6.342<br>±<br>0.903                                | (0.153<br>±<br>0.057) L                | (-0.149<br>±<br>0.025) B <sub>5</sub> | $(1.149 \pm 0.190) d_K$                             | 22     |          |        | 0.335 | 0.830          |           | 0.900     | 29 | [17] |
|                                                                    | TEST                   |                                                     |                                        |                                       |                                                     | 11     | -0.131   | 0.222  | 0.263 | 0.896          | 0.873     | 0.942     |    |      |

the efficacy of these compounds against M. tuberculosis might occur, therefore, by a process in which the formation of the



**Figure 3.** Experimental vs calculated values for  $\log(^{1}/_{MIC}) = f_{1}(B, V)$ , according to eq 13.

precursor (the hydrazyl radical) of the ultimate active agent (the acyl radical) is facilitated by stabilization through resonance, in cases in which it is possible to delocalize electronic charge, or through hyperconjugation, in the presence of linear or branched aliphatic alkyl substituents (Figure 4a).

For INH derived hydrazones, eq 20 shows that in this case the biological activity does depend on the substituent steric features, showing for the substituent's length (*L*) a slight positive effect and for its volume ( $B_5$ ) a negative effect over log(1/*MIC*). Also, in contrast with what was seen for hydrazines, the electronic factors *c* and  $\mu$  contribute unfavorably for the activity of these compounds (eq 19). From the 42 INH derived hydrazones included in Table S1, 16 of them (compounds **41**, **43–45**, **48–54**, **56**, **58–61**) show an activity similar to INH and the remaining show MIC values 50–750 higher than INH. An analysis of the structural features of the most active hydrazones discloses a large discrepancy in the characteristics of the hydrazinic substituent. Even compounds with rather big substituents and significant stereochemical constraints (i.e., com-

| <b>Table 6.</b> $\log(^{1}/_{\text{MIC}}) = a$         | $a_0 + a_1 X_1 + a_2 X_2$                           | $+ a_3 X_3$                           |                                       |                           |    |       |                |           |    |      |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------|----|-------|----------------|-----------|----|------|--|--|--|
| Compd's<br>family                                      | $\begin{array}{c} a_0 \\ \pm \\ s(a_0) \end{array}$ | $a_1 \\ \pm \\ s(a_1)$                | $a_2 \\ \pm \\ s(a_2)$                | $a_3 \\ \pm \\ s(a_3)$    | n  | SD    | R <sup>2</sup> | $Q^2$ LMO | F  | Eq.  |  |  |  |
| Correlation with electronic and geometrical parameters |                                                     |                                       |                                       |                           |    |       |                |           |    |      |  |  |  |
|                                                        | 10.519<br>±<br>1.716                                |                                       | (13.483<br>±<br>1.779) c              | (-2.721<br>±<br>0.669) d₄ | 31 | 0.690 | 0.705          | 0.708     | 33 | [18] |  |  |  |
| TOTAL                                                  | -36.878<br><u>+</u><br>4.196                        | (-0.030<br>±<br>0.014) μ              | (-107.891<br>±<br>12.051) c           |                           | 33 | 0.408 | 0.728          | 0.754     | 40 | [19] |  |  |  |
|                                                        |                                                     | Cor                                   | relation with sterio                  | e parameters              |    |       |                |           |    |      |  |  |  |
|                                                        |                                                     |                                       |                                       |                           |    |       |                |           | -  |      |  |  |  |
|                                                        | 1.532<br><u>+</u><br>0.321                          | (0.076<br><u>+</u><br>0.040) <i>L</i> | (-0.164<br>±<br>0.023) B <sub>5</sub> |                           | 39 | 0.518 | 0.590          | 0.681     | 26 | [20] |  |  |  |





Figure 4. Schematic activation of INH related compounds with the formation of two radical species: (a) subset of INH derived hydrazines; (b) subset of INH derived hydrazones.

## Analysis of Hydrazides

pounds 56, 60, and 61) show activities of the same order of magnitude as INH.

The fact that our QSAR analyses show that the activity of these compounds is decreased by electronic factors (c and  $\mu$ ), allied with the information retrieved from SARs and the impossibility of these compounds to form the hydrazyl radical, indicate that the activation of these prodrugs should not be analogous to that of INH derived hydrazines and particularly should not be able to occur near the heme active site of KatG.

These aspects lead us to believe that these compounds go through an initial process of hydrolysis, producing INH and the respective ketone. The produced INH will then follow its activation process catalyzed by KatG, as illustrated in Figure 4b.

The hypothesis of an initial hydrolysis reaction, as already suggested by Klopman et al.,<sup>11</sup> is reinforced by our QSAR results, since the increase in the external N atom charge (*c*) and the higher dipolarity of the molecule ( $\mu$ ), as well as the higher steric constraint due to the increase of volume of R ( $B_5$ ), do not favor nucleophilic attack on the protonated hydrazone, therefore reducing the production of INH and, consequently, the biological efficacy of the hydrazone.

## Conclusions

The QSAR/QSPR methodology proved to be suitable for predicting the biological activity against *M. tuberculosis* of  $R_1$ NHNH $R_2$  compounds and also for rationalizing the interaction mechanisms involved.

The results clearly show that, in contrast to what was expected, the antitubercular activity of these compounds does not depend on their lipophilic characteristics and that binding and activation seem to be the most relevant steps in the pharmacological processes of these prodrugs.

It is postulated that the activation of INH derivatives' prodrugs (hydrazines and hydrazones) occurs near the surface of the *M*. *tuberculosis*, although there is some evidence indicating that other hydrazide derivatives (those without a pyridinic or a phenylic ring associated with the hydrazide moiety) may operate in a distinct region, in a deeper zone of the cell membrane.

The correlations found for isoniazid derivatives and related compounds are consistent with a mechanism of action involving an electrophilic intermediate species (hydrazil radical or ion). The ability of the substituents to stabilize this intermediate should influence the rate of formation of the subsequent species, the acyl radical, which coupled to NADH or NAD<sup>+</sup> originates an adduct responsible for the inhibition of InhA, thus restraining mycobacterial cell wall synthesis.

The activation of INH derived hydrazines seems to be favored by hydrazinic substituents with strong characteristics of charge donation and delocalization and/or by hyperconjugation effects. However, since this binding and activation process seems to be initiated near the heme active site of KatG, a substituent's steric constraints should also be taken into account.

The activation of INH derived hydrazones seems to depend on an initial hydrolysis step.

The rational synthesis of new compounds potentially active against *M. tuberculosis* should therefore involve prodrugs with substituent groups with the referenced characteristics, in order to promote the efficacy of the prodrug. The synthesis of these new drugs should contribute to overcoming problematical aspects related to *M. tuberculosis* KatG mutations, which are considered responsible for INH resistance.

Acknowledgment. We are indebted to Prof. Michael Abraham and Dr. Andreas Zissimos for facilitating access to the

Absolv program and for the calculation of Abraham's descriptors. We are also thankful to Profs. Ruben Leitão and Susana Santos, and to Dr. Filipe Agapito for fruitful discussions, and to Prof. Lídia Pinheiro for helping us with the setting-up of the database. C. Ventura gratefully acknowledges financial support from Fundação para a Ciência e Tecnologia, Portugal, through Grant BPD/20743/2004. We are also grateful to the reviewers for their helpful comments and suggestions.

**Supporting Information Available:** Structures of the 173 compounds analyzed in this work (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (1) http://www.who.int/tb/en/ (accessed July 2007).
- (2) Zhang, Y. The Magic Bullets and Tuberculosis Drug Targets. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 529–564.
- (3) Global Tuberculosis Control: Surveillance, Planning, Financing; WHO Report 2006; World Health Organization: Geneva, 2006.
- (4) http://www.stoptb.org/ (accessed July 2007).
- (5) Ghiladi, R. A.; Medzihradszky, K. F.; Rusnak, F. M.; Montellano, P. R. O. Correlation between Isoniazid Resistance and Superoxide Reactivity in *Mycobacterium tuberculosis. J. Am. Chem. Soc.* 2005, *127*, 13428–13442.
- (6) Scior, T.; Morales, I. M.; Eisele, S. J. G.; Domeyer, D.; Laufer, S. Antitubercular Isoniazid and Drug Resistance of *Mycobacterium tuberculosis*. A Review. Arch. Pharm. (Weinheim, Ger.) 2002, 11, 511–525.
- (7) Wengenack, N. L.; Rusnak, F. Evidence for Isoniazid-Dependent Free Radical Generation Catalyzed by *Mycobacterium tuberculosis* KatG and the Isoniazid-Resistant Mutant KatG(S315T). *Biochemistry* 2001, 40, 8990–8996.
- (8) Rozwarski, D. A.; Grant, G. A.; Barton, D. H. R.; Jacobs, W. R.; Sacchettini, J. C. Modification of the NADH of the Isoniazid Target (InhA) from *Mycobacterium tuberculosis. Science* **1998**, 279, 98–102.
- (9) Ducasse-Cabanot, S.; Cohen-Gonsaud, M.; Marrakchi, H.; Nguyen, M.; Zerbib, D.; Bernadou, J.; Daffé, M.; Labesse, G.; Quémard, A. In Vitro Inhibition of the *Mycobacterium tuberculosis* β-Ketoacyl-Acyl Carrier Protein Reductase MabA by Isoniazid. *Antimicrob. Agents Chemother.* **2004**, 48, 242–249.
- (10) Johnsson, K.; Schultz, P. G. Mechanistic Studies of the Oxidation of Isoniazid by the Catalase Peroxidase from *Mycobacterium tuberculosis*. *J. Am. Chem. Soc.* **1994**, *116*, 7425–7426.
- (11) Klopman, G.; Fercu, D.; Jacob, J. Computer-Aided Study of the Relationship between Structure and Antituberculosis Activity of a Series of Isoniazid Derivatives. *Chem. Phys.* **1996**, 204, 181–193.
- (12) Seydel, J. K.; Schaper, K.-J.; Wempe, E.; Cordes, H. P. Mode of Action and Quantitative Structure–Activity Correlations of Tuberculostatic Drugs of the Isonicotinic Acid Hydrazide Type. J. Med. Chem. 1976, 19, 483–492.
- (13) Bagchi, M. C.; Maiti, B. C.; Mills, D.; Basak, S. C. Usefulness of Graphical Invariants in Quantitative Structure–Activity Correlations of Tuberculostatic Drugs of the Isonicotinic Acid Hydrazide Type. J. Mol. Model. 2004, 10, 102–111.
- (14) Saint-Joanis, B.; Souchon, H.; Wilming, M.; Johnsson, K.; Alzari, P. M.; Cole, S. T. Use of Site-Directed Mutagenesis To Probe the Structure, Function and Isoniazid Activation of the Catalase/Peroxidase, KatG, from *Mycobacterium tuberculosis*. *Biochemistry* **1999**, *338*, 753–760.
- (15) Wilming, M.; Johnsson, K. Spontaneous Formation of the Bioactive Form of the Tuberculosis Drug Isoniazid. *Angew. Chem., Int. Ed.* **1999**, 38, 2588–2590.
- (16) Nguyen, M.; Quémard, A.; Broussy, S.; Benadou, J.; Meunier, B. Mn(III) Pyrophosphate as an Efficient Tool for Studying the Mode of Action of Isoniazid on the InhA Protein of *Mycobacterium tuberculosis. Antimicrob. Agents Chemother.* **2002**, *46*, 2137–2144.
- (17) Timmins, G.; Master, S.; Rusnak, F.; Dereic, V. Requirements for Nitric Oxide Generation from Isoniazid Activation in Vitro and Inhibition of Mycobacterial Respiration in Vivo. *J. Bacteriol.* 2004, *186*, 5427–5431.
- (18) Timmins, G.; Master, S.; Rusnak, F.; Dereic, V. Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity against *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* 2004, 48, 3006–3009.
- (19) Shindikar, A. V.; Viswanathan, C. L. Novel Fluoroquinolones: Design, Synthesis, and in Vivo Activity in Mice against *Mycobacterium tuberculosis* H<sub>37</sub>R<sub>v</sub>. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1803–1806.
- (20) Testa, B.; Crivori, P.; Reist, M.; Carrupt, P. A. The Influence of Lipophilicity on the Pharmacokinetic Behavior of Drugs: Concepts and Examples. *Perspect. Drug Discovery Des.* 2000, 19, 179–211.

- (21) (a) Platts, J. A.; Butina, D.; Abraham, M. H.; Hersey, A. Estimation of Molecular Linear Free Energy Relation Descriptors by a Group Contribution Approach. J. Chem. Inf. Comput. Sci. 1999, 39, 835– 845. (b) Abraham, M. H.; Ibrahim, A.; Zissimos, A. M.; Zhao, Y. H.; Comer, J.; Reynolds, D. P. Application of Hydrogen Bonding Calculations in Property Based Drug Design. Drug Discovery Today 2002, 7, 1056–1063.
- (22) Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and Their Uses. *Chem. Rev.* 1971, 71, 525–616.
- (23) Mohamad, S.; Ibrahim, P.; Sadikun, A. Susceptibility of *Mycobacte-rium tuberculosis* to Isoniazid and Its Derivative, 1-Isonicotinyl-2-nonanoyl hydrazine: Investigation at Cellular Level. *Tuberculosis* 2004, 84, 56–62.
- (24) De Logu, A.; Onnis, V.; Saddi, B.; Congiu, C.; Schivo, M. L.; Cocco, M. T. Activity of a New Class of Isonicotinoylhydrazones Used Alone and in Combination with Isoniazid, Rifampicin, Ethambutol, Paraaminosalicylic Acid and Clofazimine against *Mycobacterium tuberculosis. J. Antimicrob. Chemother.* **2002**, *49*, 275–282.
- (25) Sriram, D.; Yogeeswari, P.; Madhu, K. Synthesis and in Vivo Antimycobacterial Activity of Isonicotinoyl Hydrazones. *Bioorg. Med. Chem. Lett.* 2005, 15, 4502–4505.
- (26) Molecular Modeling Pro Plus, version 6.2.5; www.chemistry-software. com.
- (27) (a) Chatterjee, S.; Hadi, A. S. Influential Observations, High Leverage Points, and Outliers in Linear Regression. *Stat. Sci.* **1986**, *1*, 379–416. (b) Kim, C.; Storer, B. E. Reference Values for Cook's Distance. *Commun. Stat.—Theory and Methods* **1996**, *25*, 691–708. (c) Kim, C.; Lee, Y.; Park, B. U. Cook's Distance in Local Polynomial Regression. *Stat. Probability Lett.* **2001**, *54*, 33–40. (d) Díaz-García, J. A.; González-Farías, G. A Note on the Cook's Distance. *J. Stat. Planning Inference* **2004**, *120*, 119–136.
- (28) (a) Serneels, S.; Croux, C.; Van Espen, P. J. Influence Properties of Partial Least Squares Regression. *Chemom. Intell. Lab. Syst.* 2004, 71, 13–20. (b) Militino, A. F.; Palácios, M. B.; Ugarte, M. D. Outliers Detection in Multivariate Spatial Linear Models. *J. Stat. Planning Inference* 2006, 136, 125–146.
- (29) Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T. D.; McDowell, R. W. Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression- Based QSARs. *Environ. Health Perspect.* **2003**, *111*, 1361–1375.
- (30) Tropsha, A.; Gramatica, P.; Gombar, V. K. The Importance of Being Earnest: Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. *QSAR Comb. Sci.* 2003, 22, 69– 77.
- (31) Golbraik, A.; Tropsha, A. Beware of q<sup>2</sup>! *J. Mol. Graphics. Modell.* **2002**, *20*, 269–276.
- (32) (a) Abraham, M. H.; Martins, F.; Mitchell, R. C. Algorithms for Skin Permeability Using Hydrogen Bond Descriptors. J. Pharm. Pharmacol. 1997, 49, 858–865. (b) Platts, J. A.; Abraham, M. H.; Butina, D.; Hersey, A. Estimation of Molecular Linear Free Energy Relationship Descriptors by a Group Contribution Approach. 2. Prediction of Partition Coefficients. J. Chem. Inf. Comput. Sci. 2000, 40, 71–80. (c) Zissimos, A. M.; Abraham, M. H.; Barker, M. C.; Box, K. J.; Tam, K. Y. Calculation of Abraham Descriptors from Solvent–Water Partition Coefficients in Four Different Systems; Evaluation of Different Methods of Calculation. J. Chem. Soc., Perkin Trans. 2 2002, 470–477. (d) Abraham, M. H.; Chada, H. S.; Martins, F.; Mitchell, R. C.; Bradbury, M. W.; Gratton, J. A. Hydrogen Bonding Part 46: A Review of the Correlation and Prediction of Transport Properties by

an LFER Method: Physicochemical Properties, Brain Penetration and Skin Permeability *Pestic. Sci.* **1999**, *55*, 78–88.

- (33) Verloop, A.; Tipker, J. Pharmaco Chemistry Library. In *QSAR in Drug Design and Toxicology*; Hadzi, D., Jorman-Blazic, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1987; Vol. 10; pp 97–125.
- (34) Verma, R. P.; Kurup, A.; Mekapati, S. B.; Hansch, C. Bioorg. Chemical–Biological Interactions in Human. *Med. Chem.* 2003, 13, 933–948.
- (35) (a) Selassie, C. D. History of Quantitative Structure–Activity Relationships, 1. In *Burger's Medicinal Chemistry and Drug Discovery*, 6th ed.; Abraham, D. J., Ed.; John Wiley and Sons: New York, 2003; Vol. 1, pp 1–48. (b) Tropsha, A. Recent Trends in Quantitative Structure–Activity Relationships. In *Burger's Medicinal Chemistry and Drug Discovery*, 6th ed.; Abraham, D. J., Ed.; John Wiley and Sons: New York, 2003; pp 49–76.
- (36) Abraham, M. H.; Martins, F. Human Skin Permeation and Partition: General Linear Free-Energy Relationship Analyses. J. Pharm. Sci. 2004, 93, 1508–1523.
- (37) Van Balen, G. P.; Martinet, C. M.; Caron, G.; Bouchard, G.; Reist, M.; Carrupt, P.-A; Fruttero, R.; Gasco, A.; Testa, B. Liposome/Water Lipophilicity: Methods, Information Content, and Pharmaceutical Applications. *Med. Res. Rev.* **2004**, *24*, 299–324.
- (38) Rodrigues, C.; Gameiro, P.; Prieto, M.; de Castro, B. Interaction of Rifampicin and Isoniazid with Large Unilamellar Liposomes: Spectroscopic Location Studies. *Biochem. Biophys. Acta* 2003, 1620, 151– 159.
- (39) Wengenack, N. L.; Todorovic, S.; Yu, L.; Rusnak, F. Evidence for Differential Binding of Isoniazid by *Mycobacterium tuberculosis* KatG and the Isoniazid-Resistant Mutant KatG (S315T). *Biochemistry* 1998, 37, 15825–15834.
- (40) Powers, L.; Hillar, A.; Loewen, P. C. Active Site Structure of the Catalase-Peroxidases from *Mycobacterium tuberculosis* and *Escherichia coli* by Extended X-ray Absorption Fine Structure Analysis. *Biochim. Biophys. Acta* **2001**, *1546*, 44–54.
- (41) Wei, C.-J.; Lei, B.; Musser, J. M.; Tu, S.-C. Isoniazid Activation Defects in Recombinant *Mycobacterium tuberculosis* Catalase-Peroxidase (KatG) Mutants Evident in InhA Inhibitor Production. *Antimicrob. Agents Chemother.* **2003**, 47, 670–675.
- (42) Pierattelli, R.; Banci, L.; Eady, N. A. J.; Bodiguel, J.; Jones, J. N.; Moody, P. C. E.; Raven, E. L.; Jamart-Grégoire, B.; Brown, A. Enzyme-Catalyzed Mechanism of Isoniazid Activation in Class I and Class III Peroxidases. J. Biol. Chem. 2004, 279, 39000–39009.
- (43) Bertrand, T.; Eady, N. A. J.; Jones, J. N.; Jesmin; Nagy, J. M.; Jamart-Grégoire, B.; Raven, E. L.; Brown, K. A. Crystal Structure of *Mycobacterium tuberculosis* Catalase-Peroxidase. *J. Biol. Chem.* 2004, 279, 38991–38999.
- (44) Singh, R.; Wiseman, B.; Deemagarn, T.; Donald, L. J.; Duckworth, H. W.; Carpena, X.; Fita, I.; Loewen, P. C. Catalase-Peroxidases (KatG) Exhibit NADH Oxidase Activity. J. Biol. Chem. 2004, 279, 43098–43106.
- (45) Deemagarn, T.; Carpena, X.; Singh, R.; Wiseman, B.; Fita, I.; Loewen, C. Structural Characterization of the Ser324Thr Variant of the Catalase-Peroxidase (KatG) from *Burkholderia pseudomallei*. J. Mol. Biol. 2005, 345, 21–28.
- (46) Zhao, X.; Yu, H.; Yu, S.; Wang, F.; Sacchettini, J. C.; Magliozzo, R. S. Hydrogen Peroxide-Mediated Isoniazid Activation Catalyzed by *Mycobacterium tuberculosis* Catalase-Peroxidase (KatG) and Its S315T Mutant. *Biochemistry* 2006, *45*, 4131–4140.

JM701048S